Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 74(14): 4014-4030, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37074373

RESUMO

Yellow-green variegation leaf phenotype adds more value to ornamental plants, but it is regarded as an undesirable trait in crop plants, affecting their yields. Until recently, the underlying mechanism regulating the yellow-green variegation phenotype has remained largely unexplored in soybean. In the present study, we indentified four Glycine max leaf yellow/green variegation mutants, Gmvar1, Gmvar2, Gmvar3, and Gmvar4, from artificial mutagenesis populations. Map-based cloning, together with the allelic identification test and CRISPR-based gene knockout, proved that mutated GmCS1 controls yellow-green variegation phenotype of the Gmvar mutants. GmCS1 encodes a chorismate synthase in soybean. The content of Phe, Tyr, and Trp were dramatically decreased in Gmcs1 mutants. Exogenous supply of three aromatic amino acid mixtures, or only Phe to Gmvar mutants, leads to recovery of the mutant phenotype. The various biological processes and signalling pathways related to metabolism and biosynthesis were altered in Gmvar mutants. Collectively, our findings provide new insights about the molecular regulatory network of yellow-green variegation leaf phenotype in soybean.


Assuntos
Cloroplastos , /genética , Cloroplastos/metabolismo , Mutação , Fenótipo , Folhas de Planta/metabolismo
2.
Mar Drugs ; 20(5)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35621927

RESUMO

The alga Chlamydomonas reinhardtii is a potential platform for recombinant protein expression in the future due to various advantages. Dozens of C. reinhardtii strains producing genetically engineered recombinant therapeutic protein have been reported. However, owing to extremely low protein expression efficiency, none have been applied for industrial purposes. Improving protein expression efficiency at the molecular level is, therefore, a priority. The 3'-end poly(A) tail of mRNAs is strongly correlated with mRNA transcription and protein translation efficiency. In this study, we identified a canonical C. reinhardtii poly(A) polymerase (CrePAPS), verified its polyadenylate activity, generated a series of overexpressing transformants, and performed proteomic analysis. Proteomic results demonstrated that overexpressing CrePAPS promoted ribosomal assembly and enhanced protein accumulation. The accelerated translation was further verified by increased crude and dissolved protein content detected by Kjeldahl and bicinchoninic acid (BCA) assay approaches. The findings provide a novel direction in which to exploit photosynthetic green algae as a recombinant protein expression platform.


Assuntos
Chlamydomonas reinhardtii , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Biossíntese de Proteínas , Proteômica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/metabolismo
3.
Int J Mol Sci ; 22(18)2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34576199

RESUMO

The Arabidopsis WD40 repeat protein TRANSPARENT TESTA GLABRA1 (TTG1) regulates cell fate determination, including trichome initiation and root hair formation, as well as secondary metabolism such as flavonoid biosynthesis and seed coat mucilage production. TTG1 regulates different processes via regulating the expression of its downstream target genes by forming MYB-bHLH-WD40 (MBW) activator complexes with different R2R3 MYB and bHLH transcription factors. Here, we report the identification of the carboxyl (C)-terminus as a critical domain for TTG1's functions in Arabidopsis. We found that the ttg1Δ15aa mutant shows pleiotropic phenotypes identical to a TTG1 loss-of-function mutant. Gene sequencing indicates that a single nucleotide substitution in TTG1 led to a premature stop at the W327 residue, leading to the production of a truncated TTG1 protein with a deletion of the last 15 C-terminal amino acids. The expression of TTG1 under the control of its native promoter fully restored the ttg1Δ15aa mutant phenotypes. Consistent with these observations, the expression levels of TTG1 downstream genes such as GLABRA2 (GL2) and CAPRICE (CPC) were reduced in the ttg1Δ15aa mutant. Assays in Arabidopsis protoplast show that TTG1Δ15aa failed to interact with the bHLH transcription factor GL3, and the deletion of the last 3 C-terminal amino acids or the 339L amino acid alone fully abolished the interaction of TTG1 with GL3. Furthermore, the expression of TTG1Δ3aa under the control of TTG1 native promoter failed to restore the ttg1Δ15aa mutant phenotypes. Taken together, our results suggest that the C-terminal domain of TTG1 is required for its proper function in Arabidopsis.


Assuntos
Arabidopsis/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Edição de Genes , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Fatores de Transcrição/genética , Tricomas/genética
5.
BMC Plant Biol ; 21(1): 234, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34034660

RESUMO

BACKGROUND: Trichome initiation in Arabidopsis is regulated by a MYB-bHLH-WD40 (MBW) transcriptional activator complex formed by the R2R3 MYB transcription factor GLABRA1 (GL1), MYB23 or MYB82, the bHLH transcription factor GLABRA3 (GL3), ENHANCER OF GLABRA3 (EGL3) or TRANSPARENT TESTA8 (TT8), and the WD40-repeat protein TRANSPARENT TESTA GLABRA1 (TTG1). However, the functions of the rice homologs of the MBW complex proteins remained uncharacterized. RESULTS: Based on amino acid sequence identity and similarity, and protein interaction prediction, we identified OsGL1s, OsGL3s and OsTTG1s as rice homologs of the MBW complex proteins. By using protoplast transfection, we show that OsGL1D, OsGL1E, OsGL3B and OsTTG1A were predominantly localized in the nucleus, OsGL3B functions as a transcriptional activator and is able to interact with GL1 and TTG1. By using yeast two-hybrid and protoplast transfection assays, we show that OsGL3B is able to interact with OsGL1E and OsTTG1A, and OsGL1E and OsTTG1A are also able to interact with GL3. On the other hand, we found that OsGL1D functions as a transcription activator, and it can interact with GL3 but not OsGL3B. Furthermore, our results show that expression of OsTTG1A in the ttg1 mutant restored the phenotypes including alternations in trichome and root hair formation, seed color, mucilage production and anthocyanin biosynthesis, indicating that OsTTG1A and TTG1 may have similar functions. CONCLUSION: These results suggest that the rice homologs of the Arabidopsis MBW complex proteins are able to form MBW complexes, but may have conserved and non-conserved functions.


Assuntos
Arabidopsis/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Oryza/genética , Fenótipo , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tricomas/genética , Tricomas/metabolismo
6.
Genes (Basel) ; 10(9)2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31514462

RESUMO

Laccase is a widely used industrial oxidase for food processing, dye synthesis, paper making, and pollution remediation. At present, laccases used by industries come mainly from fungi. Plants contain numerous genes encoding laccase enzymes that show properties which are distinct from that of the fungal laccases. These plant-specific laccases may have better potential for industrial purposes. The aim of this work was to conduct a genome-wide search for the soybean laccase genes and analyze their characteristics and specific functions. A total of 93 putative laccase genes (GmLac) were identified from the soybean genome. All 93 GmLac enzymes contain three typical Cu-oxidase domains, and they were classified into five groups based on phylogenetic analysis. Although adjacent members on the tree showed highly similar exon/intron organization and motif composition, there were differences among the members within a class for both conserved and differentiated functions. Based on the expression patterns, some members of laccase were expressed in specific tissues/organs, while some exhibited a constitutive expression pattern. Analysis of the transcriptome revealed that some laccase genes might be involved in providing resistance to oomycetes. Analysis of the selective pressures acting on the laccase gene family in the process of soybean domestication revealed that 10 genes could have been under artificial selection during the domestication process. Four of these genes may have contributed to the transition of the soft and thin stem of wild soybean species into strong, thick, and erect stems of the cultivated soybean species. Our study provides a foundation for future functional studies of the soybean laccase gene family.


Assuntos
Evolução Molecular , Lacase/genética , Proteínas de Plantas/genética , Caules de Planta/genética , Seleção Genética , Resistência à Doença , Lacase/química , Lacase/metabolismo , Família Multigênica , Melhoramento Vegetal/métodos , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Caules de Planta/fisiologia , /microbiologia
7.
Nat Plants ; 5(7): 676-680, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31285560

RESUMO

The molecular mechanisms underlying mycorrhizal symbioses, the most ubiquitous and impactful mutualistic plant-microbial interaction in nature, are largely unknown. Through genetic mapping, resequencing and molecular validation, we demonstrate that a G-type lectin receptor-like kinase (lecRLK) mediates the symbiotic interaction between Populus and the ectomycorrhizal fungus Laccaria bicolor. This finding uncovers an important molecular step in the establishment of symbiotic plant-fungal associations and provides a molecular target for engineering beneficial mycorrhizal relationships.


Assuntos
Laccaria/fisiologia , Micorrizas/fisiologia , Proteínas de Plantas/metabolismo , Populus/enzimologia , Populus/microbiologia , Proteínas Quinases/metabolismo , Simbiose , Laccaria/genética , Micorrizas/genética , Proteínas de Plantas/genética , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Populus/genética , Populus/fisiologia , Proteínas Quinases/genética
8.
Plant Physiol Biochem ; 139: 239-245, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30921735

RESUMO

Abscisic acid (ABA) is the key hormone that regulating plant responses to abiotic stresses. Several basic helix-loop-helix (bHLH) transcription factors have been reported to regulate ABA signaling in Arabidopsis. Paclobutrazol Resistances (PREs) are non-DNA binding bHLH transcription factors involved in the regulation of plant response to several different plant hormones including gibberellin, brassinosteroid and auxin. Here, we show that PREs are involved in the regulation of ABA and salt responses in Arabidopsis. Quantitative RT-PCR results showed that the expression levels of PRE6 as well as several other PRE genes were reduced in response to ABA treatment, but increased to salt treatment. Seed germination assays indicated that ABA sensitivity is reduced in the pre6 mutants, but increased in transgenic plants overexpressing PRE6. On the other hand, the 35S:PRE6 transgenic plants showed enhanced tolerance to salt, whereas little, if any changes were observed in the pre6 mutants. Similar responses to ABA and salt treatments were observed in the pre2 mutants and the transgenic plants overexpressing PRE2, and a slight increased resistance to ABA in seed germination was observed in the pre2 pre6 double mutants. Taken together, our results suggest that at least some of the PRE genes are ABA responsive genes, and PREs may function redundantly to regulate ABA and salt responses in Arabidopsis.


Assuntos
Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloreto de Sódio/farmacologia , Triazóis/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico/efeitos dos fármacos
9.
New Phytol ; 220(2): 502-516, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29992670

RESUMO

3-O-caffeoylquinic acid, also known as chlorogenic acid (CGA), functions as an intermediate in lignin biosynthesis in the phenylpropanoid pathway. It is widely distributed among numerous plant species and acts as an antioxidant in both plants and animals. Using GC-MS, we discovered consistent and extreme variation in CGA content across a population of 739 4-yr-old Populus trichocarpa accessions. We performed genome-wide association studies (GWAS) from 917 P. trichocarpa accessions and expression-based quantitative trait loci (eQTL) analyses to identify key regulators. The GWAS and eQTL analyses resolved an overlapped interval encompassing a hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyl transferase 2 (PtHCT2) that was significantly associated with CGA and partially characterized metabolite abundances. PtHCT2 leaf expression was significantly correlated with CGA abundance and it was regulated by cis-eQTLs containing W-box for WRKY binding. Among all nine PtHCT homologs, PtHCT2 is the only one that responds to infection by the fungal pathogen Sphaerulina musiva (a Populus pathogen). Validation using protoplast-based transient expression system suggests that PtHCT2 is regulated by the defense-responsive WRKY. These results are consistent with reports of CGA functioning as an antioxidant in response to biotic stress. This study provides insights into data-driven and omics-based inference of gene function in woody species.


Assuntos
Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Proteínas de Plantas/metabolismo , Populus/genética , Locos de Características Quantitativas/genética , Ácido Quínico/análogos & derivados , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Duplicação Gênica , Redes Reguladoras de Genes , Metaboloma , Proteínas de Plantas/química , Polimorfismo de Nucleotídeo Único/genética , Ácido Quínico/metabolismo
10.
BMC Plant Biol ; 18(1): 63, 2018 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-29653514

RESUMO

BACKGROUND: Trichome formation in Arabidopsis is regulated by a MBW complex formed by MYB, bHLH and WD40 transcriptional factors, which can activate GLABRA2 (GL2) and the R3 MYB transcription factor genes. GL2 promotes trichome formation, whereas R3 MYBs are able to block the formation of the MBW complex. It has been reported that the C2H2 transcription factor GIS (GLABROUS INFLORESCENCE STEMS) functions upstream of the MBW activator complex to regulate trichome formation, and that the expression of TCL1 is not regulated by the MBW complex. However, gis and the R3 MYB gene mutant tcl1 (trichomeless 1) have opposite inflorescence trichome phenotypes, but their relationship in regulating trichome formation remained unknown. RESULTS: By generating and characterization of the gis tcl1 double mutant, we found that trichome formation in the gis tcl1double and the tcl1 single mutants were largely indistinguishable, but the trichome formation in the 35S:TCL1/gis transgenic plant was similar to that in the gis mutant. By using quantitative RT-PCR analysis, we showed that expression level of GIS was increased in the triple mutant tcl1 try cpc, but the expression level of TCL1 was not affected in the gis mutant. On the other hand, trichome morphology in both gis tcl1 and 35S:TCL1/gis plants was similar to that in the gis mutant. CONCLUSIONS: In summary, our results indicate that GIS may work downstream of TCL1 to regulate trichome formation, and GIS has a dominant role in controlling trichome morphology.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Sistemas de Informação Geográfica , Tricomas/crescimento & desenvolvimento , Tricomas/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tricomas/metabolismo
11.
Front Plant Sci ; 8: 1813, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29114256

RESUMO

Auxin regulates nearly all aspects of plant growth and development including cell division, cell elongation and cell differentiation, which are achieved largely by rapid regulation of auxin response genes. However, the functions of a large number of auxin response genes remain uncharacterized. Paclobutrazol Resistance (PRE) proteins are non-DNA binding basic helix-loop-helix transcription factors that have been shown to be involved in gibberellin and brassinosteroid signaling, and light responses in Arabidopsis. Here, we provide molecular and genetic evidence that PRE6, one of the six PRE genes in Arabidopsis, is an auxin response gene, and that PRE6 is involved in the regulation of auxin signaling. By using quantitative RT-PCR, we showed that the expression level of PRE6 was increased in response to exogenously applied IAA. GUS staining results also showed that the expression of GUS reporter gene in the PRE6p:GUS transgenic seedlings was elevated in response to auxin. Phenotypic analysis showed that overexpression of PRE6 in Arabidopsis resulted in auxin-related phenotypes including elongated hypocotyl and primary roots, and reduced number of lateral roots when compared with the Col wild type seedlings, whereas opposite phenotypes were observed in the pre6 mutants. Further analysis showed that PRE6 overexpression plants were hyposensitive, whereas pre6 mutants were hypersensitive to auxin in root and hypocotyl elongation and lateral root formation assays. By using protoplasts transfection, we showed that PRE6 functions as a transcriptional repressor. Consistent with this, the expression of the auxin response reporter DR5:GUS was decreased in PRE6 overexpression lines, but increased in pre6 mutants. When co-transfected into protoplasts, ARF5 and ARF8 activated the expression of the PRE6p:GUS reporter. Chromatin immunoprecipitation assays showed that ARF5 and ARF8 can be recruited to the promoter regions of PRE6. Taken together, these results suggest that PRE6 is an auxin response gene whose expression is directly regulated by ARF5 and ARF8, and that PRE6 is a transcriptional repressor that negatively regulates auxin responses in Arabidopsis.

12.
Plant Cell Environ ; 40(12): 2958-2971, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28857190

RESUMO

The plant hormone abscisic acid (ABA) plays a crucial role in regulating plant responses to environmental stresses. Interplay of several different proteins including the PYR/PYL/RCAR receptors, A-group PP2C protein phosphatases, SnRK2 protein kinases, and downstream transcription factors regulates ABA signalling. We report here the identification of a family of ABA-induced transcription repressors (AITRs) that act as feedback regulators in ABA signalling. We found that the expression of all the 6 Arabidopsis AITR genes was induced by exogenously ABA, and their expression levels were decreased in ABA biosynthesis mutant aba1-5. BLAST searches showed that AITRs are exclusively present in angiosperms. When recruited to the promoter region of a reporter gene by a fused DNA binding domain, all AITRs inhibited reporter gene expression in transfected protoplasts. In Arabidopsis, aitr mutants showed reduced sensitivity to ABA and to stresses such as salt and drought. Quantitative RT-PCR analysis demonstrated that the ABA-induced response of PP2C and some PYR/PYL/RCAR genes was reduced in AITR5 transgenic plants but increased in an aitr2 aitr5 aitr6 triple mutant. These results provide important new insights into the regulation of ABA signalling in plants, and such information may lead to the production of plants with enhanced resistance to environmental stresses.


Assuntos
Ácido Abscísico/metabolismo , Magnoliopsida/enzimologia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/fisiologia , Secas , Regulação da Expressão Gênica de Plantas , Magnoliopsida/genética , Magnoliopsida/fisiologia , Mutação , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Plântula/enzimologia , Plântula/genética , Plântula/fisiologia , Sementes/enzimologia , Sementes/genética , Sementes/fisiologia , Estresse Fisiológico , Fatores de Transcrição/genética
13.
Mol Cell ; 65(4): 618-630.e7, 2017 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-28065598

RESUMO

CRISPR-Cas adaptive immune systems defend microbes against foreign nucleic acids via RNA-guided endonucleases. Using a computational sequence database mining approach, we identify two class 2 CRISPR-Cas systems (subtype VI-B) that lack Cas1 and Cas2 and encompass a single large effector protein, Cas13b, along with one of two previously uncharacterized associated proteins, Csx27 and Csx28. We establish that these CRISPR-Cas systems can achieve RNA interference when heterologously expressed. Through a combination of biochemical and genetic experiments, we show that Cas13b processes its own CRISPR array with short and long direct repeats, cleaves target RNA, and exhibits collateral RNase activity. Using an E. coli essential gene screen, we demonstrate that Cas13b has a double-sided protospacer-flanking sequence and elucidate RNA secondary structure requirements for targeting. We also find that Csx27 represses, whereas Csx28 enhances, Cas13b-mediated RNA interference. Characterization of these CRISPR systems creates opportunities to develop tools to manipulate and monitor cellular transcripts.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Escherichia coli/enzimologia , Edição de Genes/métodos , Interferência de RNA , RNA Bacteriano/metabolismo , RNA Guia de Cinetoplastídeos/metabolismo , Ribonucleases/metabolismo , Proteínas de Bactérias/genética , Proteínas Associadas a CRISPR/genética , Biologia Computacional , Mineração de Dados , Bases de Dados Genéticas , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/genética , RNA Guia de Cinetoplastídeos/genética , Ribonucleases/genética
14.
Science ; 353(6307): 1545-1549, 2016 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-27708104

RESUMO

The noncoding genome affects gene regulation and disease, yet we lack tools for rapid identification and manipulation of noncoding elements. We developed a CRISPR screen using ~18,000 single guide RNAs targeting >700 kilobases surrounding the genes NF1, NF2, and CUL3, which are involved in BRAF inhibitor resistance in melanoma. We find that noncoding locations that modulate drug resistance also harbor predictive hallmarks of noncoding function. With a subset of regions at the CUL3 locus, we demonstrate that engineered mutations alter transcription factor occupancy and long-range and local epigenetic environments, implicating these sites in gene regulation and chemotherapeutic resistance. Through our expansion of the potential of pooled CRISPR screens, we provide tools for genomic discovery and for elucidating biologically relevant mechanisms of gene regulation.


Assuntos
Proteínas Culina/genética , Elementos Facilitadores Genéticos/fisiologia , Regulação da Expressão Gênica , Genoma Humano , Genômica/métodos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proteínas de Bactérias , Proteína 9 Associada à CRISPR , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Resistencia a Medicamentos Antineoplásicos/genética , Endonucleases , Elementos Facilitadores Genéticos/genética , Regulação Neoplásica da Expressão Gênica , Genes da Neurofibromatose 1 , Genes da Neurofibromatose 2 , Loci Gênicos , Humanos , Indóis/farmacologia , Indóis/uso terapêutico , Melanoma/tratamento farmacológico , Melanoma/genética , Mutagênese , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , RNA Guia de Cinetoplastídeos/genética , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Vemurafenib
15.
Sci Rep ; 6: 21593, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26875827

RESUMO

Strigolactones are a new class of plant hormones regulating shoot branching and symbiotic interactions with arbuscular mycorrhizal fungi. Studies of branching mutants in herbaceous plants have identified several key genes involved in strigolactone biosynthesis or signaling. The strigolactone signal is perceived by a member of the α/ß-fold hydrolase superfamily, known as DWARF14 (D14). However, little is known about D14 genes in the woody perennial plants. Here we report the identification of D14 homologs in the model woody plant Populus trichocarpa. We showed that there are two D14 homologs in P. trichocarpa, designated as PtD14a and PtD14b that are over 95% similar at the amino acid level. Expression analysis indicated that the transcript level of PtD14a is generally more abundant than that of PtD14b. However, only PtD14a was able to complement Arabidopsis d14 mutants, suggesting that PtD14a is the functional D14 ortholog. Amino acid alignment and structural modeling revealed substitutions of several highly conserved amino acids in the PtD14b protein including a phenylalanine near the catalytic triad of D14 proteins. This study lays a foundation for further characterization of strigolactone pathway and its functions in the woody perennial plants.


Assuntos
Hidrolases/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Populus/genética , Receptores de Superfície Celular/genética , Proteínas de Arabidopsis/genética , Lactonas , Modelos Moleculares , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Transdução de Sinais
16.
Sci Rep ; 6: 19254, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26758286

RESUMO

In Arabidopsis, a MYB-bHLH-WD40 (MBW) transcriptional activator complex activates the homeodomain protein gene GLABRA2 (GL2), leading to the promotion of trichome formation and inhibition of root hair formation. The same MBW complex also activates single-repeat R3 MYB genes. R3 MYBs in turn, play a negative feedback role by competing with R2R3 MYB proteins for binding bHLH proteins, thus blocking the formation of the MBW complex. By BLASTing the rice (Oryza sativa) protein database using the entire amino acid sequence of Arabidopsis R3 MYB transcription factor TRICHOMELESS1 (TCL1), we found that there are two genes in rice genome encoding R3 MYB transcription factors, namely Oryza sativa TRICHOMELESS1 (OsTCL1) and OsTCL2. Expressing OsTCL1 in Arabidopsis inhibited trichome formation and promoted root hair formation, and OsTCL1 interacted with GL3 when tested in Arabidopsis protoplasts. Consistent with these observations, expression levels of GL2, R2R3 MYB transcription factor gene GLABRA1 (GL1) and several R3 MYB genes were greatly reduced, indicating that OsTCL1 is functional R3 MYB. However, trichome and root hair formation in transgenic rice plants overexpressing OsTCL1 remained largely unchanged, and elevated expression of OsGL2 was observed in the transgenic rice plants, indicating that rice may use different mechanisms to regulate trichome formation.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Expressão Ectópica do Gene , Oryza/genética , Raízes de Plantas/genética , Fatores de Transcrição/genética , Tricomas/genética , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Regulação da Expressão Gênica de Plantas , Ordem dos Genes , Loci Gênicos , Espaço Intracelular/metabolismo , Fenótipo , Filogenia , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Ligação Proteica , Transporte Proteico , Fatores de Transcrição/química , Tricomas/crescimento & desenvolvimento
17.
Sci Rep ; 5: 17587, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26625868

RESUMO

Plant hormone abscisic acid (ABA) plays a crucial role in modulating plant responses to environmental stresses. Basic helix-loop-helix (bHLH) transcription factors are one of the largest transcription factor families that regulate multiple aspects of plant growth and development, as well as of plant metabolism in Arabidopsis. Several bHLH transcription factors have been shown to be involved in the regulation of ABA signaling. We report here the characterization of bHLH129, a bHLH transcription factor in Arabidopsis. We found that the expression level of bHLH129 was reduced in response to exogenously applied ABA, and elevated in the ABA biosynthesis mutant aba1-5. Florescence observation of transgenic plants expressing bHLH129-GFP showed that bHLH129 was localized in the nucleus, and transient expression of bHLH129 in protoplasts inhibited reporter gene expression. When expressed in Arabidopsis under the control of the 35S promoter, bHLH129 promoted root elongation, and the transgenic plants were less sensitivity to ABA in root elongation assays. Quantitative RT-PCR results showed that ABA response of several genes involved in ABA signaling, including ABI1, SnRK2.2, SnRK2.3 and SnRK2.6 were altered in the transgenic plants overexpressing bHLH129. Taken together, our study suggests that bHLH129 is a transcription repressor that negatively regulates ABA response in Arabidopsis.


Assuntos
Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/biossíntese , Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Regulação para Baixo/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas Repressoras/biossíntese , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas Repressoras/genética
18.
Plant J ; 83(2): 300-11, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26017690

RESUMO

In Arabidopsis, anthocyanin biosynthesis is controlled by a MYB-bHLH-WD40 (MBW) transcriptional activator complex. The MBW complex activates the transcription of late biosynthesis genes in the flavonoid pathway, leading to the production of anthocyanins. A similar MBW complex regulates epidermal cell fate by activating the transcription of GLABRA2 (GL2), a homeodomain transcription factor required for trichome formation in shoots and non-hair cell formation in roots. Here we provide experimental evidence to show that GL2 also plays a role in regulating anthocyanin biosynthesis in Arabidopsis. From an activation-tagged mutagenized population of Arabidopsis plants, we isolated a dominant, gain-of-function mutant with reduced anthocyanins. Molecular cloning revealed that this phenotype is caused by an elevated expression of GL2, thus the mutant was named gl2-1D. Consistent with the view that GL2 acts as a negative regulator of anthocyanin biosynthesis, gl2-1D seedlings accumulated less whereas gl2-3 seedlings accumulated more anthocyanins in response to sucrose. Gene expression analysis indicated that expression of late, but not early, biosynthesis genes in the flavonoid pathway was dramatically reduced in gl2-1D but elevated in gl2-3 mutants. Further analysis showed that expression of some MBW component genes involved in the regulation of late biosynthesis genes was reduced in gl2-1D but elevated in gl2-3 mutants, and chromatin immunoprecipitation results indicated that some MBW component genes are targets of GL2. We also showed that GL2 functions as a transcriptional repressor. Taken together, these results indicate that GL2 negatively regulates anthocyanin biosynthesis in Arabidopsis by directly repressing the expression of some MBW component genes.


Assuntos
Antocianinas/biossíntese , Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Proteínas de Homeodomínio/fisiologia , Mutação , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Genes de Plantas , Genes Reporter , Proteínas de Homeodomínio/genética
19.
Front Plant Sci ; 6: 295, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25983737

RESUMO

Plant hormone auxin regulates most, if not all aspects of plant growth and development, including lateral root formation, organ pattering, apical dominance, and tropisms. Peptide hormones are peptides with hormone activities. Some of the functions of peptide hormones in regulating plant growth and development are similar to that of auxin, however, the relationship between auxin and peptide hormones remains largely unknown. Here we report the identification of OsCLE48, a rice (Oryza sativa) CLE (CLAVATA3/ENDOSPERM SURROUNDING REGION) gene, as an auxin response gene, and the functional characterization of OsCLE48 in Arabidopsis and rice. OsCLE48 encodes a CLE peptide hormone that is similar to Arabidopsis CLEs. RT-PCR analysis showed that OsCLE48 was induced by exogenously application of IAA (indole-3-acetic acid), a naturally occurred auxin. Expression of integrated OsCLE48p:GUS reporter gene in transgenic Arabidopsis plants was also induced by exogenously IAA treatment. These results indicate that OsCLE48 is an auxin responsive gene. Histochemical staining showed that GUS activity was detected in all the tissue and organs of the OsCLE48p:GUS transgenic Arabidopsis plants. Expression of OsCLE48 under the control of the 35S promoter in Arabidopsis inhibited shoot apical meristem development. Expression of OsCLE48 under the control of the CLV3 native regulatory elements almost completely complemented clv3-2 mutant phenotypes, suggesting that OsCLE48 is functionally similar to CLV3. On the other hand, expression of OsCLE48 under the control of the 35S promoter in Arabidopsis has little, if any effects on root apical meristem development, and transgenic rice plants overexpressing OsCLE48 are morphologically indistinguishable from wild type plants, suggesting that the functions of some CLE peptides may not be fully conserved in Arabidopsis and rice. Taken together, our results showed that OsCLE48 is an auxin responsive peptide hormone gene, and it regulates shoot apical meristem development when expressed in Arabidopsis.

20.
Cell ; 160(6): 1246-60, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25748654

RESUMO

Genetic screens are powerful tools for identifying genes responsible for diverse phenotypes. Here we describe a genome-wide CRISPR/Cas9-mediated loss-of-function screen in tumor growth and metastasis. We mutagenized a non-metastatic mouse cancer cell line using a genome-scale library with 67,405 single-guide RNAs (sgRNAs). The mutant cell pool rapidly generates metastases when transplanted into immunocompromised mice. Enriched sgRNAs in lung metastases and late-stage primary tumors were found to target a small set of genes, suggesting that specific loss-of-function mutations drive tumor growth and metastasis. Individual sgRNAs and a small pool of 624 sgRNAs targeting the top-scoring genes from the primary screen dramatically accelerate metastasis. In all of these experiments, the effect of mutations on primary tumor growth positively correlates with the development of metastases. Our study demonstrates Cas9-based screening as a robust method to systematically assay gene phenotypes in cancer evolution in vivo.


Assuntos
Sistemas CRISPR-Cas , Carcinoma Pulmonar de Células não Pequenas/genética , Técnicas de Inativação de Genes , Neoplasias Pulmonares/genética , Metástase Neoplásica/genética , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Estudo de Associação Genômica Ampla , Humanos , Neoplasias Pulmonares/patologia , Camundongos , RNA Guia de Cinetoplastídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...